March 2017

The AIRIE Program has pioneered Re-Os (rhenium-osmium) technology, and has been the global leader in setting protocols for dissecting sample media to determine geologic age. Since 1995, AIRIE has produced state-of-the-art Re-Os geochronology and Os isotopic tracer studies, based on forward-thinking geologically-based insights. Two multi-collector Triton mass spectrometers were built and specifically tuned for Re-Os analytical work. Our collaborating partners span 80 countries and our discoveries have benefited an enormous cross-section of the geosciences, from atmosphere to deep earth. We address fundamental scientific questions and use the results to both advance science and enhance discovery in the petroleum and mineral industries. The analytical facility is located at Colorado State University, with research and funding driven through the CEED Centre of Excellence at University of Oslo. The AIRIE Program, salaries and operations, is funded solely by grants and contracts; we receive no support from CSU for the Program.

Re-Os isotope geochemistry enlightens our understanding of how metal and hydrocarbon resources are created, interrelated, and where they are located.

Metals – Our work has led directly to discovery of ore, while challenging long-standing models for ore formation. AIRIE established the protocols for successful Re-Os TIMS dating of molybdenite, from mineral separation to interpretation of isotopic data. We developed a double Os spike to address young (or low Re) molybdenites, sharing this approach with the geochemistry community. We acquired and characterized a molybdenite reference material (RM #8599) from the Henderson molybdenum mine in Colorado – now distributed by NIST for global inter-laboratory comparison. We work with other sulfide and oxide minerals such as pyrite, arsenopyrite, chalcopyrite, and magnetite to provide age and source information through Re-Os isochrons.

Hydrocarbons – Our work with hydrocarbons includes direct dating of organic material in potential source rocks, and dating in situ and migrated bitumen and oil. In 2016, we published the first Re-Os isochron for a crude oil. We work with the hydrogenous component in black shales, and for hydrocarbons, we analyze components of the asphaltene and maltene fractions in oils. Re-Os analyses of hydrocarbons are used to model maturation-migration in both conventional and unconventional systems. Our work on sulfides and organic material in shales helps calibrate Earth’s timescale, and determine rates for sedimentologic, bio-evolutionary, and tectonic processes, giving perspective on ancient climates, oceans, global correlation of fauna, and atmospheric evolution. We provided the first absolute age for the rise of atmospheric oxygen.

For more information, please contact:

Dr. Holly J. Stein

Director, AIRIE Program, Senior Research Scientist and Professor

Colorado State University, Fort Collins, CO 80523-1482 USA
AIRIE PROGRAM, COLORADO STATE UNIVERSITY: RE-OS PUBLICATIONS

Holly Stein (Director, Senior Research Scientist and Professor)
Judith Hannah (Professor)
Aaron Zimmerman (Lab Manager and Research Associate)
Svetoslav Georgiev, Gang Yang, Rich Markey (Research Associates)
Vineet Goswami and Nicole Hurtig (Post-Docs)
Marisa Boraas-Connor and Jenna DiMarzio (Graduate Students)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Refereed Journal Papers:


Hurtig, N.C., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (author revisions) Metal transfer at the water-oil interface shows how and why Re-Os geochronometry works for petroleum systems:

Stewart, P.W., Roa, K., Stein, H.J. (author revisions) U-Pb, $^{40}$Ar/$^{39}$Ar, and Re-Os geochronology of the Fruita del Norte epithermal gold-silver deposit, southeast Ecuador: for Economic Geology.


Mohammadoost, H., Ghaderi, M., Kumar, T.V., Hassanzadeh, J., Alirezaei, S., Stein, H.J., Babu, E.V. (submitted) Zircon U-Pb and molybdenite Re-Os geochronology and sulfur isotopic composition of vein materials in the Chah-Firouzeh porphyry copper deposit, Kerman Cenozoic Magmatic Assemblage, southeastern Iran: for Ore Geology Reviews.


**Extended Abstracts and Short Papers in Proceedings/Symposium Volumes:**


**Abstracts:**


September 27-30, 2015
https://www.segweb.org/SEG/Events/SEG_Conference_Website_Archives/SEG/_Events/SEG_Conference_Website_Archives.aspx

https://www.segweb.org/SEG/Events/SEG_Conference_Website_Archives/SEG/_Events/SEG_Conference_Website_Archives.aspx


Barley, M.E. and Stein, H.J. (2010) The Spinifex Ridge 3.3 Ga porphyry-style Mo-Cu deposit, East Pilbara, Western Australia, the world’s oldest: Australian Earth Sciences Convention, Canberra (AESC), v. 98, p. 76-77.


Concepción, Chile, October 6-10, 2003, Actas, Departamento Ciencias de la Tierra, Universidad de Concepción, p. 77-78.


Other Miscellaneous Publications:

Stein, H.J. (2015) “Top science for sale”, an invited editorial on the history of the AIRIE Program (Founder and Director of the AIRIE Program discusses how a small upstart group blossomed into a research team now well known to Europe but on the skids in the USA): Pan European Networks, Science & Technology, Issue 15, p. 192-193.


